Thermoelectric materials based on 'nano cages' capture waste heat

October 09 2008 / by Garry Golden
Category: Environment   Year: 2018   Rating: 2

Thermoelectric materials can convert waste heat into electricity, or use electricity for cooling systems. Now European researchers have uncovered new insights into molecular ‘nano cages’ that might make this process of solid state energy conversion efficient.

Researchers at the University of Århus, Risø-DTU and the University of Copenhagen Niels Bohr Institute stand jointly behind new data, published in Nature Materials, that describes thermoelectric materials that could lead to breakthrough practical applications in improving engines, industrial machines, and also advance eco-friendly cooling systems for refrigeration and electronics.

Capturing waste heat – the ultimate in conservation
When we imagine ways to conserve energy and reduce waste, the real measurable gains for the planet have little to do with changing light bulbs. The area which holds the greatest potential is waste heat recovery from industrial processes, combustion engines and cooling systems. These are the most energy intensive and wasteful forms of energy conversion in the modern world.

Thermoelectric materials can be assembled into mechanical structures, which can transform the thermal difference to electrical energy or vice versa – electrical current to cooling.

Nano-cages or molecule trapping clathrate cages
The European researchers studied promising thermoelectric materials in the group of clathrates, which create crystals full of ‘nano-cages’.

“By placing a heavy atom in each nano-cage, we can reduce the crystals’ ability to conduct heat. Until now we thought that it was the heavy atoms random movements in the cages that were the cause of the poor thermal conductivity, but this has been shown to not be true”, explains Asger B. Abrahamsen, senior scientist at Risø-DTU.

“Our data shows that, it is rather the atoms’ shared pattern of movement that determines the properties of these thermoelectric materials. A discovery that will be significant for the design of new materials that utilize energy even better”, explains Kim Lefmann, associate professor at the Nano-Science Center, the Niels Bohr Institute at the University of Copenhagen.

News about thermoelectric materials is admittedly geeky when compared to stories about advances in solar and wind. But these systems are extremely important to transforming the dominant wasteful energy systems that already exist in our world. And this research adds to the growing list of recent fundamental breakthroughs that could help improve the world’s energy systems.

Continue Reading

Saudi Arabia funding Cornell research to advance nanomaterials for energy and carbon

January 24 2009 / by Garry Golden
Category: Energy   Year: 2020   Rating: 2

NIMS

The most successful players in the 'New Energy Economy' will be those who advance and profit from materials that enable cleaner interactions between molecules.

Even the 'greenest' consumers and markets will be stuck in a lower part of the value chain to countries and companies who dominate the Nanoscale Era of Science and Engineering.  The future will shaped by those who become Masters of Molecules.  So we pay close attention to investments by energy incumbents who are pushing forward around science.

Science Parternships with Petro Kingdoms
Saudia Arabia's King Abdullah University of Science and Technology (KAUST) is funding advanced research at Cornell University to develop nanomaterial applications for water desalination, carbon capture and sequestration, solar energy and the 'greening' of oil and gas production.

'Pom Poms' to the Rescue?  Nanoparticle Ionic Materials (NIMS)
The performance qualities of elements such as carbon, iron, platinum (et al) change dramatically at the nanoscale (billionth of a meter). The KAUST-Cornell research will focus on a new material discovered at Cornell called Nanoparticle Ionic Materials (NIMS).

Researchers describe NIMS as:  "pom-poms; that is, a squishy core made out of inorganic nanoparticles, and a hairy exterior called a corona that is made out of an organic polymer. This exterior can capture things such as carbon dioxide in a coal power plant, and the core can then be the catalyst to fix the carbon dioxide and convert it into something else, thereby preventing the building of carbon dioxide in the atmosphere."

Continue Reading